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Exploiting the thermodynamic potential functional provided by density functional theory, we determine
analytically the free-energy landscape �FEL� in a hard-sphere fluid. The FEL is represented in the three-
dimensional coordinate space of the tagged particle. We also analyze the distribution of the free-energy barrier
between adjacent basins and show that the most provable value and the average of the free-energy barrier are
increasing functions of the density. Since the size of the cooperatively rearranging region �CRR� is also
increased as the density is raised �Yoshidome et al., Phys. Rev. E 76, 021506 �2007��, the present result is
consistent with the Adam-Gibbs theory in which the increase of the activation energy is due to the increase of
the size of the CRR.
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I. INTRODUCTION

Understanding the glass transition remains one of the
most important unsolved problems in condensed matter
physics. A principal concern is to develop a general frame-
work which is capable of elucidating both the thermody-
namic �1,2� and dynamic �3,4� characteristics near the glass
transition temperature Tg. Although several attempts such as
the mode-coupling theory �5�, the replica method of the glass
transition �6�, and the potential-energy landscape approach
�7–10� have been proposed, they lack the desired capability.

We have recently proposed the free-energy landscape
�FEL� picture which provided a unified phenomenological
understanding of the characteristics of the glass transition
�11–14�. The FEL can be defined by the free energy calcu-
lated from the phase space around given 3N position coordi-
nates �Ri� �12,14� �Ri is the position of the ith particle and N
is the number of the particles in the system�, and thus the
FEL is a function of �Ri�, temperature, and density. The FEL
is expected to have many basins near Tg. Here, we refer to a
basin as the region in which each configuration approaches
the same minimum by steepest-descent minimization �8�.
The structural relaxation corresponds to the transition from a
basin to one of the adjacent basins. Several characteristics
near Tg such as the self-diffusion �15–19�, specific heat
anomaly at the glass transition �20–24�, aging �25,26�, and
behavior of the generalized susceptibility �14� have been ex-
plained qualitatively on the basis of the FEL picture.

Both thermodynamic and dynamic characteristics can be
understood qualitatively by the FEL picture. In order to de-
scribe the glass transition quantitatively, it is necessary to
construct the FEL from first principles and analyze the struc-
ture of the FEL. In this paper, we investigate the FEL for a
hard-sphere fluid by exploiting the thermodynamic potential
of density functional theory �11–13�. Since the structural re-
laxation is considered to be determined within a coopera-
tively rearranging region �CRR� �11–13�, we concentrate on
the FEL for a CRR. In particular, for the purpose of simpli-

fying the presentation of the FEL, we put a tag on a given
particle and force a displacement of the tagged particle in
several directions. All other particles in the CRR are relaxed
to a stable position. The FEL constructed by this procedure
corresponds to a three-dimensional cut of the entire FEL. We
analyze the statistics of the FEL at different densities through
the distribution of the free-energy barrier between two ba-
sins. In order to obtain good statistics, we put a tag on all
particles in the CRR in turn and find barriers.

We organize this paper as follows: We first present a
method for the construction of the FEL in Sec. II. In Sec. III,
the FEL for a tagged particle in a three-dimensional view is
presented. We obtain the distribution function of the free-
energy barrier between basins and its density dependence in
Sec. IV. A summary and discussion are given in Sec. V.

II. FREE-ENERGY LANDSCAPE BY DENSITY
FUNCTIONAL THEORY

A. Definition

We have proposed �11–13� that the FEL can be con-
structed using the thermodynamic potential functional of
density functional theory �27,28� in which the grand poten-
tial ����r�� is expressed as a functional of the density field,
��r�. The grand potential can be expressed as a function of
�Ri� using a sum of Gaussian functions for ��r�:

�Gauss�r� = ��

�
�3/2

	
i

exp�− ��r − Ri�2� . �1�

Here � and Ri are the degree of the spread of the density
distribution and the average position of the ith particle, re-
spectively. The density field �1� represents the distribution of
the motion around �Ri� by the Gaussian functions and means
that the motion within 
r−Ri
�1 /�� is coarse grained by �.
Using Eq. �1�, ����r�� can be expressed as a function of �
and �Ri�:

���,�Ri�� � ���Gauss�r�� . �2�

For a fixed value of �, this defines the FEL as a function of
�Ri� �11–13�.
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B. Ramakrishnan-Yussouff free-energy functional

We employ the free-energy functional developed by Ra-
makrishnan and Yussouff for ����r�� �29�. This free-energy
functional has been used for the liquid-crystal transition
�28,30� and the glass transition �31–39�. Ramakrishnan and
Yussouff expressed ����r�� as follows �29�:

� �����r�� � �����r�� − ����̄�

= 
V

dr ��r�ln���r�
�̄
� −

1

2


V

dr1
V

dr2

	c2�
r1 − r2
����r1� − �̄����r2� − �̄� , �3�

where �̄ is the uniform density defined by �̄� 1
V�dr ��r� and

c2�
r1−r2
� is the direct correlation function at �̄. In addition,
�= �kBT�−1 where kB is the Boltzmann constant and T is the
absolute temperature. We use the Percus-Yevick approxima-
tion for the direct correlation function of the hard-sphere
system �40�. Note that the essential point of the following
results and discussions does not change if we employ other
free-energy functionals such as the weighted density func-
tional �41,42� and the free-energy functional of the funda-
mental measure theory �43�. We also note that � is treated as
a constant in this paper for simplicity, though one may have
to incorporate the temperature dependence of � for a quan-
titative analysis of the glass transition.

III. FREE-ENERGY LANDSCAPE
FOR A TAGGED PARTICLE

We are interested in the FEL which is responsible for the
structural relaxation caused by particles within the CRR
�11–13�. In the previous paper �13�, we estimated the size of
the CRR in the following manner. Assuming that the shape
of the CRR is a sphere �see Fig. 1�, we first confine the
particles in the spherical shell made by fixing the particles. In
order to obtain the particle configuration �Ri� at the mini-
mum in the basin, the particles in the confining area are
relaxed to minimize ��� , �Ri�� in �Ri� space. We then cal-
culate the FEL for given positions of a selected particle.
Other particles in the confined space are relaxed with the

position of the selected particle fixed. If a transition to the
adjacent basin occurs, we decrease the size of the confining
area and calculate the FEL in the new confining area. By
reducing the number of particles in the confined area further,
one can find the critical number at which a transition to the
adjacent basin cannot take place. This critical number is
NCRR. In the previous paper, we estimated that NCRR is 8

NCRR
14 at �̄�3=0.90, 10
NCRR
18 at �̄�3=0.963,
and 27
NCRR
32 at �̄�3=1.06. Here � is the diameter of
the hard sphere.

When we construct the FEL for a tagged particle, the
particles are confined in a spherical shell made by fixed par-
ticles �see Fig. 1�. The number of particles in the spherical
shell is assumed to be the upper value of the size of the CRR
at each density. We assume ��2=36 �13�, corresponding to
the mean-squared displacement of the particle in a fcc struc-
ture at the melting point �30�. We then initialize the position
of particles within the CRR by relaxing them to a minimum
of the grand potential ��� , �Ri�� in �Ri� space. The steepest-
descent method is employed for the relaxation. In order to
make the presentation simple, we calculate the FEL for a
process in which a tagged particle near the center of the shell
is forced to be displaced in several directions and the posi-
tions of the other particles are relaxed to minimize
��� , �Ri�� in �Ri� space with the position of the tagged par-
ticle fixed. The FEL obtained here corresponds to a three-
dimensional cut of the entire FEL.

Figure 2 shows the FEL for the tagged particle at �̄�3

=0.90 in the first quadrant. Here contours of the free energy
are shown on the x-y, y-z, and z-x planes. The origin is the
initial position of the tagged particle, and x, y, and z repre-
sent the displacement in each direction.

We also survey wider areas on the x-y, y-z, and z-x planes
and construct a contour plot of the FEL. Figures 3�a�–3�c�
show the contour plot of the FEL on these three planes.
There are two basins on the y-z plane at �y /� ,z /��
= �0.8,1.2� and �−0.4,1.4� in addition to the initial basin at
the origin. These two basins are separated from the initial

FIG. 1. A schematic representation of the model under consid-
eration. The black particles are fixed, and the white particles form
the CRR.

FIG. 2. �Color online� The FEL of a tagged particle for �̄�3

=0.90 on x-y, y-z, and z-x planes in the first quadrant. x, y, and z
denote the displacement of the tagged particle. The parameter � is
set to ��2=36.
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basin by a barrier of �30–60�kBT. The height of the barrier
between these two basins is approximately 40kBT.

On the x-z plane, there are two basins at �x /� ,z /��
= �0.6,1.0� and �0.9,0.5� in addition to one at the origin. The
barrier between these two basins and the initial basin is
�30–50�kBT, and the height of the barrier between them is
approximately 20kBT.

On the x-y plane, one basin is presented at �x /� ,y /��
= �0.7,0.95� in addition to one at the origin. The free-energy
barrier between this basin and the basin at the origin is

�30–50�kBT. We observe the FEL on other planes and found
similar structures.

IV. DISTRIBUTION OF THE BARRIERS

As shown in Figs. 2 and 3, the FEL consists of many
basins and barriers. To obtain the statistics of the structure,
we investigate the distribution of barriers between two adja-
cent basins. We displace the tagged particle in 26 isotropic
directions selected from the lozenge dodecahedron surround-
ing the original position of the tagged particle: 12 directions
perpendicular to the face of the dodecahedron and 14 direc-
tions to the vertices of the dodecahedron. Other particles in
the confined area are relaxed with the position of the tagged
particle fixed. We assume that the two particles do not over-
lap when 
Ri−R j
��−� /��, since the positions of the par-
ticles are distributed around �Ri� with a width of � /�� �13�.

We define the transition state as follows �13�. Starting
from the initial configuration �Ri

initial� which is at the mini-
mum of an initial basin, we first obtain a configuration �Ri�
from the calculation above. We then relax the configuration
�Ri� to reach a minimum �Ri

min�. This configuration �Ri
min� is

compared with the initial configuration �Ri
initial�. If �Ri

min�
differs from �Ri

initial�, the system can be considered to have
passed a barrier between the basins and we regard the posi-
tion just before the second basin as the transition state. The
free-energy barrier �F is defined as the difference between
the free energy at the transition state and that at the initial
state. Although the barrier may not correspond to the saddle
between two basins, the relative error is of the order of a few
percent ��1 /NCRR� �44�, since all particles other than the
tagged particle are fully relaxed in the process to reach the
barrier. In order to obtain better statistics, we performed this
procedure for all particles one by one, and thus we examined
26NCRR paths in the FEL.

Figures 4�a�–4�c� show histograms of the free-energy bar-
rier at three different densities, �̄�3=0.9, 0.963, and 1.06.
For �̄�3=0.9 �Fig. 4�a��, the free-energy barrier is distributed
between 18.75kBT and 46.25kBT and the distribution is
asymmetric with respect to the maximum at 23.75kBT. Simi-
lar properties are also observed for densities �̄�3=0.963
�Fig. 4�b�� and �̄�3=1.06 �Fig. 4�c��.

We find that as the density is increased, the most provable
value of the free-energy barrier �e.g., 23.75kBT at �̄�3=0.9�
increases and the distribution of the free-energy barrier
moves to a higher free-energy region.

In Fig. 5, we show the density dependence of the most
provable value and the average of the free-energy barrier.

As shown in the previous paper �13�, NCRR is also an
increasing function of the density. Our results are consistent
with the Adam-Gibbs theory �45� in which the increase of
the activation energy is due to an increase of NCRR. In fact,
Fig. 6 shows that the ratio � �F /NCRR does not depend
much on the density. Here the most probable value is used
for ��F.

V. SUMMARY AND DISCUSSION

In this paper, we have demonstrated that the FEL for dis-
ordered systems and its statistics can be obtained analytically

(a)

(b)

(c)

FIG. 3. �Color online� Contour plots of the FEL of the tagged
particle on the �a� y-z, �b� z-x, and �c� x-y planes. �̄�3=0.90 and
��2=36. The initial basin is at the origin. The color scale is the
same as the one shown in Fig. 2.
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using the thermodynamic potential of density functional
theory. It has been shown that the behavior of glass-forming
systems near Tg can be determined by the waiting-time dis-
tribution from the jump motion among basins �15–19�. The
distribution of the free-energy barrier can generally be re-
lated to the waiting-time distribution �17�. One can thus de-
termine Tg and obtain the thermodynamic and dynamic prop-
erties around Tg from the waiting-time distribution �12�.
Therefore, the present procedure will open up a different
direction of investigation of the glass transition.

As the first application, we have studied the hard-sphere
fluid. For the sake of visual presentation, we have con-
structed the FEL for a tagged particle. The FEL has several
basins in addition to the initial basin. These basins are sepa-

rated by the free-energy barrier which is �30–60�kBT. Such a
high barrier may be due to the method to displace the tagged
particle. In the present calculation of the free-energy land-
scape, we forced a displacement of the tagged particle in a
particular direction. In the actual system, however, such a
displacement may not occur. Since the tagged particle in the
confined area is forced to displace in a particular direction,
the steric crash which does not occur in the actual system
may lead to the high free-energy barrier.

We have also obtained the distribution of the free-energy
barrier and shown that the density dependence of the most
provable value of the barrier and the size of the CRR are
nicely correlated. This result supports the basic assumption
of the Adam-Gibbs theory �45�. It has not succeeded in ob-
taining such a result from the experiment and simulation.

In principle, it is possible to analyze the FEL in the entire
configurational space of the CRR and obtain the statistics of
the FEL. In addition, the present method can also be applied
to systems such as colloids and granular materials, which

(a)

(b)

(c)

FIG. 4. The histogram of the free-energy barrier for a particle.
�a� �̄�3=0.9, �b� �̄�3=0.963, and �c� �̄�3=1.06. The parameter � is
set to ��2=36.
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FIG. 5. �Color online� The density dependence of the average
free-energy barrier shown in gray �red� and most provable value of
the free-energy barrier �black�.
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FIG. 6. The density dependence of the ratio ��F /NCRR using
the most provable value of the barrier. The weak dependence of this
plot supports the Adam-Gibbs theory.
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exhibit a jamming transition �46�. As shown by Odagaki
�17�, however, the waiting-time distribution for the jump mo-
tion among basins does not depend on the detail of the bar-
rier structure and is expected to obey a power-law function.

In the present study, we have treated � as a constant for
simplicity. It is necessary to incorporate the temperature and
density dependence of � for a quantitative analysis of the
glass transition in the future. One method is to take � from
the Debye-Waller factor calculated by the mode-coupling
theory �5�. Since the Debye-Waller factor is related to the
root-mean-square displacement �RMSD� and the RMSD cor-
responds to � /��, an equation for determining � can be
derived. Thus, the temperature and density dependence of �
is obtained from the equation.

The present results do not depend on the initial configu-
ration within the present density range, though Widmer-
Cooper et al. suggested that the CRR dynamics depends on
the initial configuration in the deeply supercooled liquid state
�47�. This is because we have treated densities which do not
correspond to the deeply supercooled liquid state. The den-
sities we have studied are near the melting density, 0.96 �30�,
and are much lower than the Kauzmann density, 1.30 �13�. It
is a future problem to study the initial configuration depen-
dence of the present result in the deeply supercooled liquid
state.

In conclusion, we mention the shape of the CRR assumed.
In this paper, we have used a spherical area as the CRR.

Another shape like an ellipsoid can be used instead. The
particles involved in the relaxation from one basin to an
adjacent basin have been shown to make a string motion
�13�, and these motions may depend on the shape of the
confining area. However, we confirmed that the particles ad-
jacent to the confining area hardly displace and, thus, the
particles away from the edge of the confining area determine
the distribution of the free-energy barrier. Thus, the distribu-
tion of the free-energy barrier does not depend strongly on
the shape of the CRR, unless particles of the size of the CRR
are confined in a shape such as an ellipsoid with a large
aspect ratio.

Since the particles at the edge of the confining area hardly
displace, the actual size of the CRR may be equal to or less
than that estimated in the previous paper �13�. In order to
obtain the actual size more accurately, we need to investigate
whether the structural relaxation occurs or not when each
particle at the edge of the confining area is fixed. This is a
problem to be solved in future studies.
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